# The Mathematics of Geographic Profiling 

## Dr. Mike O'Leary

## Towson University

## Project Participants

- Towson University Applied Mathematics Laboratory
- Undergraduate research projects in applied mathematics.
- Founded in 1980
- National Institute of Justice
- Special thanks to Iara Infosino (CAA), Stanley Erickson (NIJ), Ron Wilson (NIJ) and Andrew Engel (SAS)


## Collaborators

- Dr. Coy L. May (Towson University) (2005-2006, 2006-2007)
- 2005-2006 Students:
- Paul Corbitt
- Brooke Belcher
- Brandie Biddy
- 2006-2007 Students:
- Chris Castillo
- Adam Fojitik
- 2007-2008 Students:
- Lauren Amrhine
- Chris Castillo
- Natasha Gikunju
- Colleen Carrion
- Gregory Emerson
- Melissa Zimmerman
- Laurel Mount
- Ruozhen Yao
- Jonathan Vanderkolk
- Grant Warble


## Geographic Profiling

- The Question:

Given a series of linked crimes committed by the same offender, can we make predictions about the anchor point of the offender?

- The anchor point can be a place of residence, a place of work, or some other commonly visited location.


## Geographic Profiling

- What characteristics should a good geographic profiling method possess?

1. It should be mathematically rigorous.
2. There should be explicit connections between assumptions on offender behavior and components of the mathematical model.

## Geographic Profiling

- What (other) characteristics should a good geographic profiling technique possess?

3. It should take into account local geographic features that affect:
a. The selection of a crime site;
b. The selection of an anchor point.
4. It should rely only on data available to local law enforcement.
5. It should return a prioritized search area.

## Main Result

- We have developed a fundamentally new mathematical technique for geographic profiling.
- We have implemented the algorithm in software, and begun testing it on actual crime series.


## Existing Methods

- Spatial distribution strategies
- Probability distance strategies
- Notation:
- Anchor point $z=\left(z^{(1)}, z^{(2)}\right)$
- Crime sites $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{\boldsymbol{n}}$
- Number of crimes $n$


## Spatial Distribution Strategies

- Centroid

$$
\hat{\boldsymbol{z}}_{\text {centroid }}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{\boldsymbol{i}}
$$

- Center of minimum distance; $\hat{\mathbf{z}}_{\text {cmd }}$ minimizes

$$
D(\boldsymbol{y})=\sum_{i=1}^{n} d\left(\boldsymbol{x}_{i}, \boldsymbol{y}\right)
$$

- We can use different choices for the metricEuclidean, Manhattan, Travel distance, Travel time.


## Spatial Distribution Strategies

- Circle Method (Canter \& Larkin, 1993):
- Anchor point contained in the circle whose diameter are the two crimes that are farthest apart.
- Offenders who live within the circle are called marauders; those who love outside are called commuters.


## Probability Distribution Strategies

- The anchor point is located in a region with a high "hit score".
- The hit score $S(y)$ has the form

$$
\begin{aligned}
S(\boldsymbol{y}) & =\sum_{i=1}^{n} f\left(d\left(\boldsymbol{y}, \boldsymbol{x}_{i}\right)\right) \\
& =f\left(d\left(\boldsymbol{z}, \boldsymbol{x}_{1}\right)\right)+f\left(d\left(\boldsymbol{z}, \boldsymbol{x}_{2}\right)\right)+\cdots+f\left(d\left(\boldsymbol{z}, \boldsymbol{x}_{n}\right)\right)
\end{aligned}
$$

where $\boldsymbol{x}_{i}$ are the crime locations, $f$ is a decay function and $d$ is a distance metric.

## Rossmo (Rigel)

- Manhattan distance metric.
- Decay function
$f(d)= \begin{cases}\frac{k}{d^{h}} & \text { if } d>B \\ \frac{k B^{g-h}}{(2 B-d)^{g}} & \text { if } d \leqslant B\end{cases}$
- The constants $k, g, h$ and $B$ are empirically defined.


## Canter, Coffey, Huntley \& Missen (Dragnet)

- Euclidean distance
- Decay functions

$$
\cdot f(d)=A e^{-\beta d}
$$

- $f(d)=\left\{\begin{array}{cl}0 & \text { if } d<A, \\ 1 & \text { if } A \leq d<B, \\ C e^{-\beta d} & \text { if } d \geq B .\end{array}\right.$
- Calibrated against homicide data


## Levine (CrimeStat)

- Euclidean distance
- Decay functions
- Linear

$$
f(d)=A+B d
$$

- Negative

$$
f(d)=A e^{-\beta d}
$$

- Normal

$$
f(d)=\frac{A}{\sqrt{2 \pi S^{2}}} \exp \left[\frac{-(d-\bar{d})^{2}}{2 S^{2}}\right]
$$

- Lognormal

$$
f(d)=\frac{A}{d \sqrt{2 \pi S^{2}}} \exp \left[\frac{-(\ln d-\bar{d})^{2}}{2 S^{2}}\right]
$$

## CrimeStat



## Probability Distribution Strategies

- Existing methods differ in their choices of
- The distance measure, and
- The distance decay function;
but share the common mathematical heritage:

$$
S(\boldsymbol{y})=\sum_{i=1}^{n} f\left(d\left(\boldsymbol{y}, \boldsymbol{x}_{i}\right)\right)
$$

- In practice, $S(\boldsymbol{y})$ may be evaluated only at discrete values $\boldsymbol{y}_{j}$ giving us a hit score matrix

$$
S_{i j}=\sum_{i=1}^{n} f\left(d\left(\boldsymbol{y}_{j}, \boldsymbol{x}_{i}\right)\right)
$$

## Shortcomings

- These techniques are all ad hoc.
- What is their theoretical justification?
- What assumptions are being made about criminal behavior?
- What mathematical assumptions are being made?
- How do you choose one method over another?


## Shortcomings

- The convex hull effect:
- The anchor point always occurs inside the convex hull of the crime locations.

Crime locations

## Shortcomings

- How do you add in local information?
- How could you incorporate socio-economic variables into the model?
- Snook, Individual differences in distance travelled by serial burglars
- Malczewski, Poetz \& Iannuzzi, Spatial analysis of residential burglaries in London, Ontario
- Bernasco \& Nieuwbeerta, How do residential burglars select target areas?
- Osborn \& Tseloni, The distribution of household property crimes


## Shortcomings

- These methods require some a priori knowledge of the offender's distance decay function.
- In particular, they require an estimate of the distance that the serial offender is likely to travel before the analysis process begins.
- Indeed, the constant(s) that appear in the distance decay function must be selected before starting the analysis.


## A New Approach

- Let us start with a model of offender behavior.
- In particular, let us begin with the ansatz that an offender with anchor point $\boldsymbol{z}$ commits a crime at the location $\boldsymbol{x}$ according to a probability density function $P(\boldsymbol{x} \mid \boldsymbol{z})$.
- This is an inherently continuous model.


## A New Approach

- Assumptions about
- The offender's likely behavior, and
- The local geography
can then be incorporated into the form of $P(\boldsymbol{x} \mid \boldsymbol{z})$.


## The Mathematics

- Given crimes located at $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{n}$ the maximum likelihood estimate for the anchor point $\hat{\boldsymbol{z}}_{m l e}$ is the value of $\boldsymbol{y}$ that maximizes

$$
\begin{aligned}
L(\boldsymbol{y}) & =\prod_{i=1}^{n} P\left(\boldsymbol{x}_{i} \mid \boldsymbol{y}\right) \\
& =P\left(\boldsymbol{x}_{\mathbf{1}} \mid \boldsymbol{y}\right) P\left(\boldsymbol{x}_{\mathbf{2}} \mid \boldsymbol{y}\right) \cdots P\left(\boldsymbol{x}_{n} \mid \boldsymbol{y}\right)
\end{aligned}
$$

or equivalently, the value that maximizes

$$
\begin{aligned}
\lambda(\boldsymbol{y}) & =\sum_{i=1}^{n} \ln P\left(\boldsymbol{x}_{\boldsymbol{i}} \mid \boldsymbol{y}\right) \\
& =\ln P\left(\boldsymbol{x}_{\mathbf{1}} \mid \boldsymbol{y}\right)+\ln P\left(\boldsymbol{x}_{\mathbf{2}} \mid \boldsymbol{y}\right)+\cdots+\ln P\left(\boldsymbol{x}_{\boldsymbol{n}} \mid \boldsymbol{y}\right)
\end{aligned}
$$

## Relation to

## Spatial Distribution Strategies

- If we assume offenders choose target locations based only on a distance decay function in bivariate normal form:

- Then the maximum likelihood estimate for the anchor point is the centroid.


## Relation to

## Spatial Distribution Strategies

- If we assume offenders choose target locations based only on a distance decay function in exponentially decaying form:

- Then the maximum likelihood estimate is the center of minimum distance.


## Relation to Probability Distance Strategies

- What is the log likelihood function?

$$
\lambda(y)=\sum_{i=1}^{n}\left[-\ln \left(2 \pi \sigma^{2}\right)-\frac{\left|x_{i}-y\right|}{\sigma}\right]
$$

- This is the hit score $S(y)$ provided we use Euclidean distance and the linear decay $f(d)=A+B d$ for

$$
\begin{aligned}
& A=-\ln \left(2 \pi \sigma^{2}\right) \\
& B=-1 / \sigma
\end{aligned}
$$

## Parameters

- The maximum likelihood technique does not require a priori estimates for parameters other than the anchor point.

$$
P(x \mid z, \sigma)=\frac{1}{2 \pi \sigma^{2}} \exp \left[-\frac{|x-z|^{2}}{2 \sigma^{2}}\right]
$$

The same process that determines the best choice of $\sigma$ also determines the best choice of $\boldsymbol{z}$.

## Better Models

- We have recaptured the results of existing techniques by choosing $P(\boldsymbol{x} \mid \boldsymbol{z})$ appropriately.
- These choices of $P(\boldsymbol{x} \mid \boldsymbol{z})$ are not very realistic.
- Space is homogeneous and crimes are equidistributed.
- Space is infinite.
- Decay functions were chosen arbitrarily.


## Better Models

- Our framework allows for better choices of $P(\boldsymbol{x} \mid \boldsymbol{z})$
- Consider

$$
P(\boldsymbol{x} \mid \boldsymbol{z})=D(d(\boldsymbol{x}, \boldsymbol{z})) \cdot G(\boldsymbol{x}) \cdot N(z)
$$

Distance Decay
(Dispersion Kernel)

## Geographic

 factors
## Geography

- What geographic factors should be included in the model?
- Snook, Individual differences in distance travelled by serial burglars
- Malczewski, Poetz \& Iannuzzi, Spatial analysis of residential burglaries in London, Ontario
- Bernasco \& Nieuwbeerta, How do residential burglars select target areas?
- Osborn \& Tseloni, The distribution of household property crimes


## Geography

- This approach has some problems.
- Different crimes have different etiologies.
- We would need to study each different crime type.
- There are regional differences.
- Tseloni, Wittebrood, Farrell and Pease (2004) noted that increased household affluence indicated higher burglary rates in Britain, and indicated lower burglary rates in the U.S.


## Geography

- Instead, we assume that historical crime rates are reasonable predictors of the likelihood that a particular region will be the site of an offense.
- Rather than explain crime rates in terms of underlying geographic variables, we simply measure the resulting geographic variability.
- Let $G(x)$ represent the local attractiveness of potential targets.


## Geography

- An analyst can determine what historical data should be used to generate the geographic target density function.
- Different crime types will necessarily generate different functions $G(x)$.
- $G(x)$ is calculated by kernel density parameter estimation.

$$
G(x)=\sum_{i=1}^{N} K\left(x-y_{i}\right)
$$




## Geography

- The target attractiveness function $G(x)$ must also account for jurisdictional boundaries.
- Suppose that a law enforcement agency gets reports for all crimes within the region $J$, and none from outside $J$.
- Then we must have

$$
G(x)=0 \quad \text { for all } x \notin J
$$

as no crimes that occur outside $J$ will be known to that agency.

## Distance Decay



Distance Decay


## Distance Decay

- Suppose that each offender has a decay function $f(d \mid \sigma)$ where $\sigma \in \Sigma$ varies among offenders according to the distribution $\pi(\sigma)$.
- Then if we look at the decay function for all offenders, we obtain the aggregate distribution

$$
F(d)=\int_{\Sigma} f(d \mid \sigma) \cdot \pi(\sigma) d \sigma
$$

## Distance Decay

- Suppose that the distance decay behavior of an individual offender is exponentially decaying, so that



## Distance Decay

- Suppose that the mean distance an offender travels follows an inverse gamma distribution



## Distance Decay

- Then we can equate the first and second moments of the mixture distribution with the empirical data.



## Distance Decay

- This gives us a statistical method to estimate the distribution $\pi(\sigma)$.
- Note that information about $\pi(\sigma)$ is equivalent to prior information about the offender before the characteristics of the crime series are considered.


## Distance Decay

- We can also try to estimate $\pi(\sigma)$ by solving for $\pi(\sigma)$ in

$$
F(d)=\int_{0}^{\infty} \frac{1}{\sigma} e^{-d / \sigma} \pi(\sigma) d \sigma
$$

- If $\pi(\sigma)$ is bounded, then $F(d)$ is differentiable

$$
\left|F^{(k)}(d)\right| \leqslant \int_{0}^{\infty} \frac{1}{\sigma^{k+1}} e^{-d / \sigma}\|\pi\|_{\infty} d \sigma \leqslant \frac{\Gamma(k)\|\pi\|_{\infty}}{d^{k}}
$$

so the map $\pi \rightarrow F$ is regularizing, (in fact, it is essentially a Laplace transform) so the problem of determining $\pi(\sigma)$ from $F(d)$ is unstable.

## Normalization

- The expression

$$
P(\boldsymbol{x} \mid \boldsymbol{z})=D(d(\boldsymbol{x}, \boldsymbol{z})) \cdot G(\boldsymbol{x}) \cdot N(z)
$$

is to represent a probability density function; as a consequence,

$$
N(z)=\frac{1}{\iint_{J} G(y) D(d(y, z)) d y^{(1)} d y^{(2)}}
$$

## Maximum Likelihood Estimation

- We are then left with the of finding the maximum value of the likelihood function

$$
L(y)=\frac{\prod_{i=1}^{n} D\left(d\left(x_{i}, y\right)\right) G\left(x_{i}\right)}{\left[\iint_{J} D(d(\xi, y)) G(\xi) d \xi^{(1)} d \xi^{(2)}\right]^{n}}
$$

## Implementation

- We have implemented this algorithm in software.
- Integration was performed using a seven-point fifth-order Gaussian method.
- Optimization was performed using a cyclic coordinate technique with a Hooke and Jeeves accelerator.
- Running time with ~ 650 boundary vertices and $\sim 1000$ historical crimes is $\sim 10$ minutes.




## Likelihood Functions

- The estimate for the maximum likelihood is mathematically rigorous.
- The contour surface shows the likelihood function for the optimal choice of $\sigma$.
- This gives a probability surface for the offender's anchor point only if
* the estimate for sigma is correct, and
* all anchor points are equally likely.


## Bayesian Methods

- Police agencies would prefer a search area to the point estimate $\hat{z}_{\text {mle }}$.
- We take a Bayesian approach.
- If we have one crime

$$
\begin{aligned}
P(z, \sigma \mid x) & =\frac{P(x, z, \sigma)}{P(x)} \\
& =\frac{P(x \mid z, \sigma) H(z) \pi(\sigma)}{\int_{\varsigma \in \Sigma} \int_{\zeta \in J} P(x \mid z, \varsigma) H(\zeta) \pi(\varsigma) d \zeta d \varsigma}
\end{aligned}
$$

where $H(z)$ is the prior distribution for anchor points.

## Bayesian Methods

- To calculate the prior distribution of anchor points, we suppose that they are proportional to the local population density, and use block level census data.
- Choose a kernel functions $K(x \mid \lambda)$ with bandwidth $\lambda$.
- Let block $i$ have center $y_{i}$, population $P_{i}$ and area $A_{i}$, and set $\lambda_{i}=C \sqrt{A_{i}}$ for some constant $C$.
- Then

$$
H(z)=\sum_{i \in I} P_{i} K\left(z-y_{i} \mid \lambda_{i}\right)
$$

## Bayesian Methods

- If we have $n$ crimes, and we assume that the crime locations are all independent then

$$
\begin{aligned}
& P\left(z, \sigma \mid x_{1}, x_{2}, \cdots, x_{n}\right) \\
&=\frac{\prod_{i=1}^{n} P\left(x_{i} \mid z, \sigma\right) H(z) \pi(\sigma)}{\int_{\varsigma \in \Sigma} \int_{\zeta \in J} \prod_{i=1}^{n} P\left(x_{i} \mid \zeta, \varsigma\right) H(\zeta) \pi(\sigma) d \zeta d \varsigma}
\end{aligned}
$$

## Bayesian Methods

- Since the relevant distribution is the marginal distribution for $z$, we easily see that

$$
\begin{aligned}
& P\left(z \mid x_{1}, x_{2}, \cdots, x_{n}\right) \\
& \propto \int_{\sigma \in \Sigma} \prod_{i=1}^{n} P\left(x_{i} \mid z, \sigma\right) H(z) \pi(\sigma) d \sigma \\
& \propto \int_{\sigma \in \Sigma} \prod_{i=1}^{n} D\left(d\left(x_{i}, z\right), \sigma\right) G\left(x_{i}\right) \\
& \\
& \quad \cdot N(z) H(z) \pi(\sigma) d \sigma
\end{aligned}
$$

## Strengths of this Framework

- All of the assumptions on criminal behavior are made in the open.
- They can be challenged, tested, discussed and compared.


## Weaknesses of this Framework

- GIGO
- The method is only as accurate as the accuracy of the choice of $P(\boldsymbol{x} \mid \boldsymbol{z})$.
- It is unclear what the right choice is for $P(\boldsymbol{x} \mid \boldsymbol{z})$
- Even with the simplifying assumption that

$$
P(\boldsymbol{x} \mid \boldsymbol{z})=D(d(\boldsymbol{x}, \boldsymbol{z})) \cdot G(\boldsymbol{x}) \cdot N(z)
$$

this is difficult.

## Weaknesses

- The framework assumes that crime sites are independent, identically distributed random variables.
- This is probably false in general!
- This should be a solvable problem though...


## Next Steps

- Model improvements:
- What would a better choice for the model of criminal behavior?
- Model selection and multi-model inference.


## Questions?

Contact information:
Dr. Mike O'Leary
Director, Center for Applied Information Technology
Towson University
Towson, MD 21252

410-704-7457
moleary@towson.edu

